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The formulat ion of the problem of a point explosion in an ideal ly br i t t le  body is examined;  the dependence of 
the cha rac t e r i s t i c  d imension of the f r ac tu re  zone on the intensi ty of the point source  is es tabl ished by d i -  
mensional  analysis  [1]. Cer ta in  phys ico- technica l  p rob lems  whose mathemat ica l  descr ip t ion  can be reduced 
to the p rob lem of a point explosion are  br ief ly  considered.  

1. Formula t ion  of the problem.  In an infinite space consis t ing of an ideally br i t t le  ma te r i a l  le t  there  be a cyl in-  
d r ica l  or  spher ica l  cavity of radius r ,  whose walls  a r e a c t e d  on by a p r e s s u r e  p during t ime r. We r eca l l  that bodies 
that obey a l inear  Hooke 's  law up to f r ac tu re  'are cons idered  ideal ly br i t t le :  in par t icu la r ,  near  the end of a c rack  there  
is no region in which the ma te r i a l  does not obey Hooke's  law. The body is considered to be homogeneous and isotropic;  
it is assumed that a cer ta in  number  n of init ial  c racks  of length t 0 extend to the boundary of the cavity. At the ini t ial  
instant the body is at res t .  

As a r e su l t  of the application of p r e s s u r e  the cracks  develop; at sufficiently large growth ra tes  the c racks  spon- 
taneously branch and thei r  number inc reases .  The f r ac tu re  p rocess  ends in the cessa t ion  of "mult ipl icat ion"  and de-  
velopment  of the cracks .  

We denote by R a certain characteristic linear dimension of the fracture region. For example, as R we can take 
the maximum dimension determined by the most developed cracks or the dimension of the zone formed by unconnected 

pieces of material. It is very important to find this geometric characteristic as a function of the parameters of the 
problem. 

We assume that the solution of this very  complicated dynamic problem of the theory of e las t ic i ty  has been found 
and pass to the l imi t  

.r~o, r~O, p.--,~, Zo/r~O (1.1) 

o r  

v-*~,  r->0, p--->~o, lo/r~O (1.2) 

but so that one pa r ame te r - - t ha t  cha rac t e r i z ing  the intensity of the explos ion-- i s  finite.  As the la t te r  pa rame te r ,  de -  
pending on the formulat ion of the physical  p roblem (see below), it is possible  to take e i ther  the total energy  of the ex-  
plosion a or  the impulse  J. Obviously, these quanti t ies have the following d imensions :  

spher ica l  case 

�9 [o] = FL, [J] = Yr (1 .3)  

plane case 

[91=P,  lgl = FL-iT (1.4) 

Here ,  F is force ,  L length, and T t ime.  Thus, we obtain the p rob lem of the f rac tu re  of an ideally br i t t le  body 
under the action of a point explosion of intensity O or  J. 

The explosion may take place e i the r  at the f ree  surface  of the body (surface explosion) or in the in te r io r  of the 
body (contained explosion): in both cases  it is assumed that R is finite but much less  than the cha rac t e r i s t i c  l inear  
dimension of the body, for example,  the radius of curva ture  of the boundary at the explosion point in the f i r s t  case  or 
the dis tance between the center  of the explosion and the sur face  of the body in the second. 

2. D e t e r m i n a t i o n  of  the d e p e n d e n c e  of  the s i z e  of  the f r a c t u r e  r e g i o n  on the i n t e n s i t y  of  the e x p l o s i o n .  The 
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corresponding mathemat ical  problem is formulated as follows: It is required  to solve the equations of the dynamic 
theory of e las t ic i ty  in a region with moving surfaces  of discontinuity of the displacements ;  on the t ime-dependent  
boundary of the sur faces  of discontinuity (cracks) cer ta in  additional conditions, de te rmin ing  the velocity and branching 
of the cracks,  their  type, and the direct ion of development of the crack contour, must  be satisfied.  The init ial  con-  
f iguration of the cracks and the cavity in the body at r e s t  is given. 

The dynamic equations of the theory of elast ic i ty  reduce to a sys tem of wave equations [2] in the displacement  
potentials  (four in the general  th ree -d imens iona l  case and two for the plane problem). These equations contain only two 
pa rame te r s :  c and v, where c is the propagation velocity of the longitudinal waves and v is Poissonts  rat io ([c] = LT -1, 
iv] = 1). 

We assume that the free edges of the cracks are not under load and that a state of cohesion or dry fr ict ion exis ts  
at the edges in contact. In nei ther  case does YoungTs modulus E enter  into the boundary conditions of the l imit ing point 
problem. When dry  Coulomb fr ic t ion is taken into account, the boundary conditions will also contain the d imens ionless  
coefficient of f r ic t ion f of the rubbing edges of the cracks.  

The additional conditions at the boundary of a dynamic crack in an ideally br i t t le  body (determining its velocity, 
branching,  anddi rec t ion  of growth) contain [3] only one new paramete r  Ey; here,  y is the surface energy density,  a 
physical constant  of the ideally br i t t le  body represen t ing  the diss ipat ion of energy due to c rack  growth per  unit  area.  

Obviously, this pa ramete r  has the dimensions  

[Ey] = F2L -~ (2.1) 

Moreover,  in the point problem we are given an additional condition de te rmin ing  the intensi ty of the explosion; it 
contains ei ther  the quantity 9̀ or the quantity J (see (1.8) and (1.4)). 

The charac te r i s t i c  l inear  d imens ion  R of the f rac ture  region depends only on the pa rame te r s  enter ing into the 
different ia l  equations and the init ial ,  boundary, and auxil iary conditions of the problem. 

Using the 7r theorem, by dimensional  analysis  we easi ly  obtain the following formula.s: 

spher ical  case 

plane case 

.9% (c])'h 
R = ~., (n, l ,  v ) - -  ( 2 . 2 )  R = ~,1 (n, 1, v) (ET),/, , (~.r),/, 

R = ~. (n, 1, v) (E~)V, , R = ~ (n, 1, '~) (E.r),/,(cJ)'/~" (2 .3 )  

Here, ~1, X2, X3, and X4 are cer ta in  d imens ionless  functions of their  a rguments ;  f rom physical  considerat ions  
it is natura l  to assume that they are approximately constant. On the left we have wri t ten the formulas  for problems 
with finite source energy,  on the r ight  those for problems with finite impulse.  F rom general  considerat ions  one can 
eas i ly  obtain cer ta in  in te res t ing  re la t ions ;  the complete analytic solution of the mathemat ical  problem is accessible  
only in the s imples t  s e l f - s imi l a r  case and for a single crack [4]. 

For  the e las t i c -p las t i c  model an analogous dimensional  analysis  of the point  p roblem leads to the following 
re la t ions  for the size of the f rac ture  zone corresponding to (2.2) and (2.3): 

spher ical  case 

R(•;)v. f a' / '  ,~, , . }  

~ , } 
( c  J )  " ~ ' E ' E R  v, l, n 

(2.4) 
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plane case  

( E~)'/" �9 I ~'I' ~ ~ } 

(E~)'f, . f(cj)'t, % ~ } 
R ~ = f, (- R~;/, ' ~ , TTg,  ", J, ~ 

(2 .5 )  

Here,  u s is the cha rac t e r i s t i c  s t r e s s  of the l imit ing state in the e l a s t i c -p l a s t i c  model.  

In re la t ion to explosions in soi ls  the best  known models  are  the Coulomb-Tay lo r -Penney  [5] and the Mises -  
Sch le iehe r -Gr igoryan  [6] models .  Hill, K o r y a v o v ,  Zwolinski, Aliev,  and others  have used var ious  theor ies  of the 
l imit ing state for solving the p rob lem of a spher ica l  explosion. 

We r eca l l  that for br i t t le  bodies the concept of a l imit ing state,  on which the models  of an ideally e l a s t i c -p la s t i c  
body are  based, is fundamentally inapplicable;  in par t icu la r ,  the f r ac tu re  s t r e s s  for a br i t t le  body depends important ly 
on the s t ruc ture  of the mate r i a l ,  which va r i e s  during the f r ac tu re  p rocess .  

Hopkinson's rule  R N or, is obtained f rom (2.4) as a l imit ing case.  Another l imi t  of applicabil i ty of Hopkinson's 
ruIe is associa ted with the re l a t ive ly  large  influence of gravi ty  for more  powerful explosions [5]. In prac t ice  the "one-  
th i rd"  and " two-f i f ths"  power Iaws are  indist iguishable as a resu l t  of the sca t t e r  of the data. 

It is des i rab le  to analyze cer ta in  specif ic  physicotechnical  problems leading to the formulat ion of the problem of 
a point explosion with de te rmina t ion  of the cor responding  values of 9 or J. 

3. Re lease  of chemica l  energy.  In the case  of ordinary  explosives  (TNT, powder, etc. ) the f rac tu re  mechanism 
is as follows. As a r e su l t  of the h igh-veloc i ty  chemica l  reac t ion  the solid or liquid explosive is converted into a gas at 
high p re s su re .  The la t ter  is respons ib le  for  the des t ruc t ion  and deformat ion of the body. 

In the case in question the total explosion energy O is d i rec t ly  proport ional  to the internal  energy of the explosive 
charge,  which, in turn, is d i r ec t ly  propor t ional  to the mass  of the charge Q, i . e . ,  

= ~Q ( 3 . 1 )  

Here,  the propor t ional i ty  fac tor  77 depends on the shape of the cavity, the shape of the charge,  the a r rangement  of 
the charge in the cavity,  the method of init iat ing the explosion, and the location of the init ial  cavity (at the surface  or 
r emote  f rom the surface).  In the case  of a sur face  explosion the dependence of ~ on these fac tors  is par t icu la r ly  strong. 

According to the data presented  in [7], 60-70% of all the chemica l  energy of the Charge is converted into mechan-  
ical energy,  which makes it poss ib le  to es t imate  the value of rl. 

4. Passage  of a wave through a defect.  Let the body contain an initial cavity or a defect  of the c rack  type with 
a r e a  So; when a powerful shor t -dura t ion  tension wave with a s t r e s s  of the o rder  of u passes  through the defect,  an 
impulse of the o rde r  of J ~ uS0~- acts  on each wall of the crack.  It is r equ i red  to de te rmine  the final s ize of the c rack  
R [8]. This problem is of in te res t  in connection with the safety of s t ruc tu res  and the stabil i ty of slopes.  

If R >> 10, where l 0 is the l inear  dimension of the initial c rack  and 10 ~ c% then it makes sense to formulate  the 
point problem with a finite impulse J; in this case  R is de te rmined  f rom the second of Eqs.  (2.2). 

5. Impact on a ha l f - space .  In the case  of normal  impact  on a br i t t le  ha l f - space  of a point mass  m moving at a 
very high veloci ty v, in o rde r  to de t e rmine  the s ize  of the f rac tu re  zone it is neces sa ry  to use the f i r s t  of Eqs. (2.2); 
the quantity 9 will  be equal to the kinetic energy of the par t ic le .  

At r e l a t ive ly  low, a lmos t  quas i - s t a t i c  ve loc i t i es  it is n e c e s s a r y  to use the second of Eqs. (2.2); the quantity J 
will  be equal to the momentum of the par t ic le .  The la t te r  p roblem is of specia l  in te res t  in connection with percuss ive  
boring [9]. 

The choice of these solutions is based on the following passages to the limit: 
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,n = a~--e 0, v ~ l / 8 - - - > o c ,  mv~- . . - . t ,  mv--->O ( 5 . 1 )  

m ~ l / e ~ oo, v = e ~ O, mv2--> O, m v  .-> l 

As the formula  descr ib ing  in termediate  cases it is natural  to take the approximate express ion  

(5.2) 

In the plane case the problem of the impact of an absolutely rigid wedge against  a br i t t le  half-space with an ini t ial  
crack of length l 0 dese rves  attention; as a resu l t  of cleavage the length of the crack becomes equal to R. In the same 
way as before, when R >> 10 it is possible,  using (2.3), to find the following approximate formula  for R: 

m'l~ r . 1 1  \%7 (5.3) 

Here, m is the mass  of the wedge per unit  length. In this case the constants I z and 1~ a l sodepend  on the wedge 
angle. 

6. Release of thermal  energy. In the case of underground atomic explosions in hard rocks the atomic energy of 
the charge W (according to E ins te in ' s  formula equal to the product of the square of the speed of light and the mass  
defect of the nuclear  fuel) is converted into thermal  and radiat ion energy. At the center  of the explosion a dense high-  
tempera ture  p lasma is formed f rom the mater ia l  of the rock; the mechanical  des t ruc t ion  of the rock remote  from the 
center  proceeds in exactly the same way as in an ordinary  chemical  explosion only on a la rger  scale.  

In this case the quantity a is d i rect ly  proport ional  to W: 

8 = ~w (6.1) 

However, the proport ional i ty  factor } is,  of course,  much less  than for an ordinary  explosive. According to the data 
presented in [7], 20-30% of the ent i re  energy W is converted into mechanical  energy,  which makes it possible to e s t i -  
mate the value of ~. Relation (2.2), together with (6.1), gives a ra ther  good descr ip t ion of. the exist ing data on unde r -  
ground nuclear  explosions [7, 10]. 

In conclusion, the author thanks V. N. Mosinets for d iscuss ing  his work. 
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